Upregulation of a silent sodium channel after peripheral, but not central, nerve injury in DRG neurons.

نویسندگان

  • J A Black
  • T R Cummins
  • C Plumpton
  • Y H Chen
  • W Hormuzdiar
  • J J Clare
  • S G Waxman
چکیده

After transection of their axons within the sciatic nerve, DRG neurons become hyperexcitable. Recent studies have demonstrated the emergence of a rapidly repriming tetrodotoxin (TTX)-sensitive sodium current that may account for this hyperexcitability in axotomized small (<27 microm diam) DRG neurons, but its molecular basis has remained unexplained. It has been shown previously that sciatic nerve transection leads to an upregulation of sodium channel III transcripts, which normally are present at very low levels in DRG neurons, in adult rats. We show here that TTX-sensitive currents in small DRG neurons, after transection of their peripheral axonal projections, reprime more rapidly than those in control neurons throughout a voltage range of -140 to -60 mV, a finding that suggests that these currents are produced by a different sodium channel. After transection of the central axonal projections (dorsal rhizotomy) of these small DRG neurons, in contrast, the repriming kinetics of TTX-sensitive sodium currents remain similar to those of control (uninjured) neurons. We also demonstrate, with two distinct antibodies directed against different regions of the type III sodium channel, that small DRG neurons display increased brain type III immunostaining when studied 7-12 days after transection of their peripheral, but not central, projections. Type III sodium channel immunoreactivity is present within somata and neurites of peripherally axotomized, but not centrally axotomized, neurons studied after <24 h in vitro. Peripherally axotomized DRG neurons in situ also exhibit enhanced type III staining compared with control neurons, including an accumulation of type III sodium channels in the distal portion of the ligated and transected sciatic nerve, but these changes are not seen in centrally axotomized neurons. These observations are consistent with a contribution of type III sodium channels to the rapidly repriming sodium currents observed in peripherally axotomized DRG neurons and suggest that type III channels may at least partially account for the hyperexcitibility of these neurons after injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphological Identification of Cell Death in Dorsal Root Ganglion Neurons Following Peripheral Nerve injury and repair in adult rat

Background: Axotomy causes sensory neuronal loss. Reconnection of proximal and distal nerve ends by surgical repair improves neuronal survival. It is important to know the morphology of primary sensory neurons after the surgical repair of their peripheral processes. Methods: Animals (male Wistar rats) were exposed to models of sciatic nerve transection, direct epineurial suture repair of sciati...

متن کامل

Changes in expression of two tetrodotoxin-resistant sodium channels and their currents in dorsal root ganglion neurons after sciatic nerve injury but not rhizotomy.

Two TTX-resistant sodium channels, SNS and NaN, are preferentially expressed in c-type dorsal root ganglion (DRG) neurons and have been shown recently to have distinct electrophysiological signatures, SNS producing a slowly inactivating and NaN producing a persistent sodium current with a relatively hyperpolarized voltage-dependence. An attenuation of SNS and NaN transcripts has been demonstrat...

متن کامل

Anti-hyperalgesic effects of calcitonin on neuropathic pain interacting with its peripheral receptors

BACKGROUND The polypeptide hormone calcitonin is clinically well known for its ability to relieve neuropathic pain such as spinal canal stenosis, diabetic neuropathy and complex regional pain syndrome. Mechanisms for its analgesic effect, however, remain unclear. Here we investigated the mechanism of anti-hyperalgesic action of calcitonin in a neuropathic pain model in rats. RESULTS Subcutane...

متن کامل

Differing alterations of sodium currents in small dorsal root ganglion neurons after ganglion compression and peripheral nerve injury

Voltage-gated sodium channels play important roles in modulating dorsal root ganglion (DRG) neuron hyperexcitability and hyperalgesia after peripheral nerve injury or inflammation. We report that chronic compression of DRG (CCD) produces profound effect on tetrodotoxin-resistant (TTX-R) and tetrodotoxin-sensitive (TTX-S) sodium currents, which are different from that by chronic constriction inj...

متن کامل

Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury.

Peripheral nerve injury is known to upregulate the rapidly repriming Na(v)1.3 sodium channel within first-order spinal sensory neurons. In this study, we hypothesized that (1) after peripheral nerve injury, second-order dorsal horn neurons abnormally express Na(v)1.3, which (2) contributes to the responsiveness of these dorsal horn neurons and to pain-related behaviors. To test these hypotheses...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 82 5  شماره 

صفحات  -

تاریخ انتشار 1999